Mean square cordial labelling related to some acyclic graphs and its rough approximations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$4$-Total prime cordial labeling of some cycle related graphs

Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...

متن کامل

3-difference cordial labeling of some cycle related graphs

Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...

متن کامل

Some Results on Total Mean Cordial Labeling of Graphs

A graph G = (V,E) with p vertices and q edges is said to be a Total Mean Cordial graph if there exists a function f : V (G) → {0, 1, 2} such that for each edge xy assign the label ⌈ f(x)+f(y) 2 ⌉ where x, y ∈ V (G), and the total number of 0, 1 and 2 are balanced. That is |evf (i)− evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0,...

متن کامل

Some totally modular cordial graphs

In this paper we define total magic cordial (TMC) and total sequential cordial (TSC) labellings which are weaker versions of magic and simply sequential labellings of graphs. Based on these definitions we have given several results on TMC and TSC graphs.

متن کامل

Some Star and Bistar Related Divisor Cordial Graphs

A divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2,... | |} V such that an edge uv is assigned the label 1 if either ( ) | ( ) f u f v or ( ) | ( ) f v f u and the label 0 if ( ) ( ) f u f v , then number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a divisor cordial labeling is called a divisor cordial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2018

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1000/1/012040